3.4.50 \(\int (7+5 x^2)^2 \sqrt {4+3 x^2+x^4} \, dx\) [350]

3.4.50.1 Optimal result
3.4.50.2 Mathematica [C] (verified)
3.4.50.3 Rubi [A] (verified)
3.4.50.4 Maple [C] (verified)
3.4.50.5 Fricas [A] (verification not implemented)
3.4.50.6 Sympy [F]
3.4.50.7 Maxima [F]
3.4.50.8 Giac [F]
3.4.50.9 Mupad [F(-1)]

3.4.50.1 Optimal result

Integrand size = 24, antiderivative size = 198 \[ \int \left (7+5 x^2\right )^2 \sqrt {4+3 x^2+x^4} \, dx=\frac {319 x \sqrt {4+3 x^2+x^4}}{7 \left (2+x^2\right )}+\frac {1}{7} x \left (119+38 x^2\right ) \sqrt {4+3 x^2+x^4}+\frac {25}{7} x \left (4+3 x^2+x^4\right )^{3/2}-\frac {319 \sqrt {2} \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} E\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{7 \sqrt {4+3 x^2+x^4}}+\frac {81 \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{\sqrt {2} \sqrt {4+3 x^2+x^4}} \]

output
25/7*x*(x^4+3*x^2+4)^(3/2)+319/7*x*(x^4+3*x^2+4)^(1/2)/(x^2+2)+1/7*x*(38*x 
^2+119)*(x^4+3*x^2+4)^(1/2)+81/2*(x^2+2)*(cos(2*arctan(1/2*x*2^(1/2)))^2)^ 
(1/2)/cos(2*arctan(1/2*x*2^(1/2)))*EllipticF(sin(2*arctan(1/2*x*2^(1/2))), 
1/4*2^(1/2))*((x^4+3*x^2+4)/(x^2+2)^2)^(1/2)*2^(1/2)/(x^4+3*x^2+4)^(1/2)-3 
19/7*(x^2+2)*(cos(2*arctan(1/2*x*2^(1/2)))^2)^(1/2)/cos(2*arctan(1/2*x*2^( 
1/2)))*EllipticE(sin(2*arctan(1/2*x*2^(1/2))),1/4*2^(1/2))*2^(1/2)*((x^4+3 
*x^2+4)/(x^2+2)^2)^(1/2)/(x^4+3*x^2+4)^(1/2)
 
3.4.50.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 5.10 (sec) , antiderivative size = 343, normalized size of antiderivative = 1.73 \[ \int \left (7+5 x^2\right )^2 \sqrt {4+3 x^2+x^4} \, dx=\frac {4 \sqrt {-\frac {i}{-3 i+\sqrt {7}}} x \left (876+1109 x^2+658 x^4+188 x^6+25 x^8\right )-319 \sqrt {2} \left (3 i+\sqrt {7}\right ) \sqrt {\frac {-3 i+\sqrt {7}-2 i x^2}{-3 i+\sqrt {7}}} \sqrt {\frac {3 i+\sqrt {7}+2 i x^2}{3 i+\sqrt {7}}} E\left (i \text {arcsinh}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right )|\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )+\sqrt {2} \left (-35 i+319 \sqrt {7}\right ) \sqrt {\frac {-3 i+\sqrt {7}-2 i x^2}{-3 i+\sqrt {7}}} \sqrt {\frac {3 i+\sqrt {7}+2 i x^2}{3 i+\sqrt {7}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right ),\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )}{28 \sqrt {-\frac {i}{-3 i+\sqrt {7}}} \sqrt {4+3 x^2+x^4}} \]

input
Integrate[(7 + 5*x^2)^2*Sqrt[4 + 3*x^2 + x^4],x]
 
output
(4*Sqrt[(-I)/(-3*I + Sqrt[7])]*x*(876 + 1109*x^2 + 658*x^4 + 188*x^6 + 25* 
x^8) - 319*Sqrt[2]*(3*I + Sqrt[7])*Sqrt[(-3*I + Sqrt[7] - (2*I)*x^2)/(-3*I 
 + Sqrt[7])]*Sqrt[(3*I + Sqrt[7] + (2*I)*x^2)/(3*I + Sqrt[7])]*EllipticE[I 
*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7]) 
] + Sqrt[2]*(-35*I + 319*Sqrt[7])*Sqrt[(-3*I + Sqrt[7] - (2*I)*x^2)/(-3*I 
+ Sqrt[7])]*Sqrt[(3*I + Sqrt[7] + (2*I)*x^2)/(3*I + Sqrt[7])]*EllipticF[I* 
ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])] 
)/(28*Sqrt[(-I)/(-3*I + Sqrt[7])]*Sqrt[4 + 3*x^2 + x^4])
 
3.4.50.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {1518, 1490, 27, 1511, 27, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (5 x^2+7\right )^2 \sqrt {x^4+3 x^2+4} \, dx\)

\(\Big \downarrow \) 1518

\(\displaystyle \frac {1}{7} \int \left (190 x^2+243\right ) \sqrt {x^4+3 x^2+4}dx+\frac {25}{7} x \left (x^4+3 x^2+4\right )^{3/2}\)

\(\Big \downarrow \) 1490

\(\displaystyle \frac {1}{7} \left (\frac {1}{15} \int \frac {15 \left (319 x^2+496\right )}{\sqrt {x^4+3 x^2+4}}dx+x \sqrt {x^4+3 x^2+4} \left (38 x^2+119\right )\right )+\frac {25}{7} x \left (x^4+3 x^2+4\right )^{3/2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (\int \frac {319 x^2+496}{\sqrt {x^4+3 x^2+4}}dx+x \sqrt {x^4+3 x^2+4} \left (38 x^2+119\right )\right )+\frac {25}{7} x \left (x^4+3 x^2+4\right )^{3/2}\)

\(\Big \downarrow \) 1511

\(\displaystyle \frac {1}{7} \left (1134 \int \frac {1}{\sqrt {x^4+3 x^2+4}}dx-638 \int \frac {2-x^2}{2 \sqrt {x^4+3 x^2+4}}dx+x \sqrt {x^4+3 x^2+4} \left (38 x^2+119\right )\right )+\frac {25}{7} x \left (x^4+3 x^2+4\right )^{3/2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (1134 \int \frac {1}{\sqrt {x^4+3 x^2+4}}dx-319 \int \frac {2-x^2}{\sqrt {x^4+3 x^2+4}}dx+x \sqrt {x^4+3 x^2+4} \left (38 x^2+119\right )\right )+\frac {25}{7} x \left (x^4+3 x^2+4\right )^{3/2}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {1}{7} \left (-319 \int \frac {2-x^2}{\sqrt {x^4+3 x^2+4}}dx+\frac {567 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{\sqrt {2} \sqrt {x^4+3 x^2+4}}+x \sqrt {x^4+3 x^2+4} \left (38 x^2+119\right )\right )+\frac {25}{7} x \left (x^4+3 x^2+4\right )^{3/2}\)

\(\Big \downarrow \) 1509

\(\displaystyle \frac {1}{7} \left (\frac {567 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{\sqrt {2} \sqrt {x^4+3 x^2+4}}-319 \left (\frac {\sqrt {2} \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{\sqrt {x^4+3 x^2+4}}-\frac {x \sqrt {x^4+3 x^2+4}}{x^2+2}\right )+x \sqrt {x^4+3 x^2+4} \left (38 x^2+119\right )\right )+\frac {25}{7} x \left (x^4+3 x^2+4\right )^{3/2}\)

input
Int[(7 + 5*x^2)^2*Sqrt[4 + 3*x^2 + x^4],x]
 
output
(25*x*(4 + 3*x^2 + x^4)^(3/2))/7 + (x*(119 + 38*x^2)*Sqrt[4 + 3*x^2 + x^4] 
 - 319*(-((x*Sqrt[4 + 3*x^2 + x^4])/(2 + x^2)) + (Sqrt[2]*(2 + x^2)*Sqrt[( 
4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticE[2*ArcTan[x/Sqrt[2]], 1/8])/Sqrt[4 
+ 3*x^2 + x^4]) + (567*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*Ellip 
ticF[2*ArcTan[x/Sqrt[2]], 1/8])/(Sqrt[2]*Sqrt[4 + 3*x^2 + x^4]))/7
 

3.4.50.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1490
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(2*b*e*p + c*d*(4*p + 3) + c*e*(4*p + 1)*x^2)*((a + b*x^2 + c 
*x^4)^p/(c*(4*p + 1)*(4*p + 3))), x] + Simp[2*(p/(c*(4*p + 1)*(4*p + 3))) 
 Int[Simp[2*a*c*d*(4*p + 3) - a*b*e + (2*a*c*e*(4*p + 1) + b*c*d*(4*p + 3) 
- b^2*e*(2*p + 1))*x^2, x]*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 

rule 1518
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x 
_Symbol] :> Simp[e^q*x^(2*q - 3)*((a + b*x^2 + c*x^4)^(p + 1)/(c*(4*p + 2*q 
 + 1))), x] + Simp[1/(c*(4*p + 2*q + 1))   Int[(a + b*x^2 + c*x^4)^p*Expand 
ToSum[c*(4*p + 2*q + 1)*(d + e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - b*(2* 
p + 2*q - 1)*e^q*x^(2*q - 2) - c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; 
 FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + 
 a*e^2, 0] && IGtQ[q, 1]
 
3.4.50.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.52 (sec) , antiderivative size = 236, normalized size of antiderivative = 1.19

method result size
risch \(\frac {x \left (25 x^{4}+113 x^{2}+219\right ) \sqrt {x^{4}+3 x^{2}+4}}{7}+\frac {1984 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{7 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}-\frac {10208 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )-E\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )\right )}{7 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}\) \(236\)
default \(\frac {219 x \sqrt {x^{4}+3 x^{2}+4}}{7}+\frac {1984 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{7 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}-\frac {10208 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )-E\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )\right )}{7 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}+\frac {25 x^{5} \sqrt {x^{4}+3 x^{2}+4}}{7}+\frac {113 x^{3} \sqrt {x^{4}+3 x^{2}+4}}{7}\) \(258\)
elliptic \(\frac {219 x \sqrt {x^{4}+3 x^{2}+4}}{7}+\frac {1984 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{7 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}-\frac {10208 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )-E\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )\right )}{7 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}+\frac {25 x^{5} \sqrt {x^{4}+3 x^{2}+4}}{7}+\frac {113 x^{3} \sqrt {x^{4}+3 x^{2}+4}}{7}\) \(258\)

input
int((5*x^2+7)^2*(x^4+3*x^2+4)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/7*x*(25*x^4+113*x^2+219)*(x^4+3*x^2+4)^(1/2)+1984/7/(-6+2*I*7^(1/2))^(1/ 
2)*(1-(-3/8+1/8*I*7^(1/2))*x^2)^(1/2)*(1-(-3/8-1/8*I*7^(1/2))*x^2)^(1/2)/( 
x^4+3*x^2+4)^(1/2)*EllipticF(1/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/ 
2))^(1/2))-10208/7/(-6+2*I*7^(1/2))^(1/2)*(1-(-3/8+1/8*I*7^(1/2))*x^2)^(1/ 
2)*(1-(-3/8-1/8*I*7^(1/2))*x^2)^(1/2)/(x^4+3*x^2+4)^(1/2)/(3+I*7^(1/2))*(E 
llipticF(1/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2))-EllipticE 
(1/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2)))
 
3.4.50.5 Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.65 \[ \int \left (7+5 x^2\right )^2 \sqrt {4+3 x^2+x^4} \, dx=\frac {319 \, \sqrt {2} {\left (\sqrt {-7} x - 3 \, x\right )} \sqrt {\sqrt {-7} - 3} E(\arcsin \left (\frac {\sqrt {2} \sqrt {\sqrt {-7} - 3}}{2 \, x}\right )\,|\,\frac {3}{8} \, \sqrt {-7} + \frac {1}{8}) - 3 \, \sqrt {2} {\left (65 \, \sqrt {-7} x - 443 \, x\right )} \sqrt {\sqrt {-7} - 3} F(\arcsin \left (\frac {\sqrt {2} \sqrt {\sqrt {-7} - 3}}{2 \, x}\right )\,|\,\frac {3}{8} \, \sqrt {-7} + \frac {1}{8}) + 4 \, {\left (25 \, x^{6} + 113 \, x^{4} + 219 \, x^{2} + 319\right )} \sqrt {x^{4} + 3 \, x^{2} + 4}}{28 \, x} \]

input
integrate((5*x^2+7)^2*(x^4+3*x^2+4)^(1/2),x, algorithm="fricas")
 
output
1/28*(319*sqrt(2)*(sqrt(-7)*x - 3*x)*sqrt(sqrt(-7) - 3)*elliptic_e(arcsin( 
1/2*sqrt(2)*sqrt(sqrt(-7) - 3)/x), 3/8*sqrt(-7) + 1/8) - 3*sqrt(2)*(65*sqr 
t(-7)*x - 443*x)*sqrt(sqrt(-7) - 3)*elliptic_f(arcsin(1/2*sqrt(2)*sqrt(sqr 
t(-7) - 3)/x), 3/8*sqrt(-7) + 1/8) + 4*(25*x^6 + 113*x^4 + 219*x^2 + 319)* 
sqrt(x^4 + 3*x^2 + 4))/x
 
3.4.50.6 Sympy [F]

\[ \int \left (7+5 x^2\right )^2 \sqrt {4+3 x^2+x^4} \, dx=\int \sqrt {\left (x^{2} - x + 2\right ) \left (x^{2} + x + 2\right )} \left (5 x^{2} + 7\right )^{2}\, dx \]

input
integrate((5*x**2+7)**2*(x**4+3*x**2+4)**(1/2),x)
 
output
Integral(sqrt((x**2 - x + 2)*(x**2 + x + 2))*(5*x**2 + 7)**2, x)
 
3.4.50.7 Maxima [F]

\[ \int \left (7+5 x^2\right )^2 \sqrt {4+3 x^2+x^4} \, dx=\int { \sqrt {x^{4} + 3 \, x^{2} + 4} {\left (5 \, x^{2} + 7\right )}^{2} \,d x } \]

input
integrate((5*x^2+7)^2*(x^4+3*x^2+4)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(x^4 + 3*x^2 + 4)*(5*x^2 + 7)^2, x)
 
3.4.50.8 Giac [F]

\[ \int \left (7+5 x^2\right )^2 \sqrt {4+3 x^2+x^4} \, dx=\int { \sqrt {x^{4} + 3 \, x^{2} + 4} {\left (5 \, x^{2} + 7\right )}^{2} \,d x } \]

input
integrate((5*x^2+7)^2*(x^4+3*x^2+4)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(x^4 + 3*x^2 + 4)*(5*x^2 + 7)^2, x)
 
3.4.50.9 Mupad [F(-1)]

Timed out. \[ \int \left (7+5 x^2\right )^2 \sqrt {4+3 x^2+x^4} \, dx=\int {\left (5\,x^2+7\right )}^2\,\sqrt {x^4+3\,x^2+4} \,d x \]

input
int((5*x^2 + 7)^2*(3*x^2 + x^4 + 4)^(1/2),x)
 
output
int((5*x^2 + 7)^2*(3*x^2 + x^4 + 4)^(1/2), x)